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General Information 
In this document we present a brief summary of portfolio theory in multi-period time setting. The latter 
implies that an investor is allowed to rebalance his/her portfolio continuously. Its single-period counterpart 
was developed by Harry Markovitz in his celebrated Modern Portfolio Theory. Apart from multi-period 
settings, single-period investment model restricts investor from rebalancing his portfolio during portfolio 
life. In other words, any portfolio strategy under a single-period setting holds the constant number of units 
in each asset until the investment horizon has been reached. 
 
While the math behind the continuous-time portfolio theory is far more complicated, its logic substantially 
stays the same. Fortunately, it appears that the essential properties of efficient portfolios under single-
period and multi-period settings are quite similar, which makes it possible to use results obtained in the 
single-period model in its multi-period counterpart. In particular, in the simplest case structure of respective 
optimal portfolio strategies is shifted from constant number of units in each asset to constant portfolio 
weights. 

Chapters overview 

 Discussion is started with the Correction of Historical Prices algorithm, which is used prior to other 
analysis procedures. 

 
 Examination of various definitions of returns and rates of return takes place in Types of Returns. 
 
 General lognormal continuous-time model of asset prices evolution is expounded in Analytical Model of 

Financial Market. 
 
 Frequently used definitions and formulas related to portfolio and its dynamics are outlined in Portfolio 

Analytics. 
 
 Definitions of utility functions and related measures are presented in Utility Functions and Measures of 

Risk Aversion respectively. 
 
 Definitions and results related to a notion of efficient frontier are discussed in Efficient Frontier. 
 
 Various approaches to portfolio optimization are outlined in Optimality Criteria. Also read extremely 

useful topic of Robust Optimization, which deals with frequently underestimated problem of parameter 
uncertainty. 

 
 General framework of factor models is examined in Factor-based Asset Pricing Models. Particular cases 

are considered in Capital Asset Pricing Model and Fama-French 3-factor Model. 
 
 The problem of estimating the model parameters (expected returns and covariances) plays the central 

role in portfolio analysis and optimization. Brief description of sample estimates is given in Sample 
Estimates for Means and Covariances, while more complicated techniques can be accessed through 
Advanced Estimates.  

 
 Definitions of portfolio insurance strategies are given in Portfolio Insurance. 
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 Discussion of optimal portfolio strategies in the presence of proportional transaction costs takes place 

in Proportional Transaction Costs and Inaction Region. 
 
 Definitions of Value-at-Risk and Conditional Value-at-Risk, coupled with several calculation techniques, 

are presented in Risk Management Tools. 

Correction of historical prices 

There are several cases when the price of an asset changes while its value for an investor stays the same. In 
such situations it is necessary to impose corrections to the corresponding time series. Correction is 
necessary in the case of the following events:  
 
 Dividend payments in Stocks and Mutual Funds 

 
 Splits and Reversed Splits in Stocks and Mutual Funds 

 
 Rollovers in Futures 

 
Note. Data downloaded from Yahoo!Finance server is already corrected for possible dividends and splits. 
 
The general correction algorithm is described below. 
Imagine that there is a gap on the price chart, which is induced by one of the above-listed events. Let oldS  

and newS  denote the prices just before and after the break point respectively. 

 

Then the correction coefficient k  is calculated by the following formula: new

old

S
k

S
 . All the prices before 

the break point are then multiplied by k . 
 
In case of n  gaps let’s start by sorting them from the latest to the earliest. The corresponding correction 
coefficients denote by ,..., nk k1 . 
 
Let’s multiply by k1  all the prices that lie between the second and the first break points. Then multiply the 

prices between the third and the second break points by k k1 2 . Subsequently performing the analogous 

today

newS

oldS
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operation over all other time intervals bounded by adjacent break points, we will finish at the section that 

lies to the left of the earliest break point. It is easy to see that its prices must be multiplied by 
n

i
i

k


1

. 

Types of returns 

Consider some asset S  (S  is allowed to denote investor’s portfolio wealth as well) over the period 0  to 
T . Time T  is measured in years. Let  S 0  and  S T  denote prices of S  at time 0  and T  respectively.  

Below are presented the definitions actively used in the current document. The corresponding terminology 
is not settled yet; therefore the divergences with the terms used in other sources might occur.  

Types of Returns 

Various definitions of return serve to measure the degree of price change over the given time period. 

Definition. Quantity  
   

 ,T
S T S

p
S


0
0

0
 is called Simple return or Arithmetic return over the 

period 0  to T . 

Definition. Quantity  
 
 , lnT

S T
r

S
0 0

 is called Log return or Geometric return over the period 0  to T . 

 
Note. Applying Taylor series expansion up to fourth-order term, one can obtain the following 

approximation of  ,Tr 0  when 
 
 

S T
S 0

 is close to 1 :          , , , , ,T T T T Tr p p p p  2 3 4
0 0 0 0 0

1 1 1
2 3 4

 . 

Rates of Return 

Under Rates of return we will further denote returns that are normalized to annual basis. Rates of return 
may also be called Annualized returns or simply Annual returns. Another frequently used synonym is 
Growth Rate. 

Definition. Quantity    , ,T TP p
T

0 0
1

 will be called Simple rate of return (other notations include 

Arithmetic rate of return or Rate of return without compounding) over the period 0  to T . 
 

Definition. Quantity    , ,T TR r
T

0 0
1

 will be called Logarithmic rate of return (Geometric rate of return 

or Continuously compounded rate of return respectively) over the period 0  to T .  
 
Important! For simplicity reasons everywhere hereinafter under the terms rate of return and growth 
rate a logarithmic rate of return will be implied. Then, when one requires using simple rates of return, 
the latter will be indicated explicitly. 

Expected Rates of Return 

The symbol E  below stands for Mathematical Expectation (averaging over all possible outcomes with 
weights equal to respective probabilities). 
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Definition. Quantity    , ,T TP  E0 0  will be called Expected simple rate of return (Expected arithmetic 

rate of return or Expected rate of return without compounding) over the period 0  to T . 
 
Note. Maximization of portfolio expected rate of return is equivalent to the maximization of expected 
portfolio wealth. 
 
Definition. Quantity    , ,T TR  E0 0  will be called Expected log rate of return (Expected geometric rate 

of return or Expected continuously compounded rate of return, or simply Expected growth rate) over 
the period 0  to T . 
 
Note. Maximizing portfolio expected growth rate is equivalent to maximizing logarithmic utility function 
from portfolio wealth. 
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Analytical Model  

Analytical Model of Financial Market  

Warning! Reading of the subsequent text assumes basic knowledge of probability theory. 
 
The Analytical Model of Financial Market  (or simply Analytical Model), utilized in SmartFolio, is based on 
Multidimensional Geometric Brownian Motion – the most common class of stochastic processes used in 
mathematical finance to model the dynamics of prices.  
 
Consider n  risky assets ,..., nS S1  available for the investments. Assume also that the investor has access to 

some risk-free asset S0 , which yields continuously compounded rate of return fr  that will be referred to as 

the riskless rate or risk-free rate. An investor expresses prices of assets ,..., nS S0   in units of asset S0 . 

Discounted price of asset iS  at time t  is denoted by  iS t . Upper asterisk    in consequent text 

denotes transposition operation. 
 
The main assumption of analytical model is given by the following system of stochastic differential 
equations, which describe evolution of discounted prices of assets ,..., nS S0 : 
 

 
 
 

     

 
 

     

...

     

     

     

...

f n n

n
n f n n nn n

n

S t

dS t
r d dt dW t dW t

S t

dS t
r d dt dW t dW t

S t

  

  

             

0

1
1 1 11 1 1

1

1 1

1





 

 

In the above expression drift vector  ,..., n    1


 (further referred to as the Mu vector), the vector of 

continuously compounded dividend yields  ,..., nd d d  1


 and volatility matrix 

n

n nn

 

 

         

11 1

1


  


 

consist of constant values, while elements of  ,..., nW W W  1


 represent independent Wiener 

processes. 
 

Definition. For the sake of convenience the vector e
fr d   

 
, will be further referred to as the 

Excess Mu vector.  
Definition. Matrix    is called Covariance Matrix. 
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Note. Readers, who are not familiar with stochastic differential equations in continuous time, may interpret 

dt  as very short time range, 
 
 
i

i

dS t
S t

 as simple return in i -th asset over  ,t t dt  and  dW t


 as 

normally distributed random vector, whose elements are independent of each other (and of components of 

other vectors  dW s


,  ,s t dt t dt   ), have zero mean and variance dt . 

 
Denote by  Diag x


 diagonal matrix with elements of vector x


 at the main diagonal. At the same time 

for diagonal matrix A  denote column vector  Diag A , whose elements are equal to diagonal elements 

of A .  
In these notations the above system of stochastic differential equations reduces to: 
 

       edS t Diag S t dt dW t 
  

. 

 
A simple solution is presented below: 
 

   
   

   
   

...

...

.

.

.

e
n n

ne
n n nn n

t W t W t

t W t W t

n n

S t S e

S t S e


  


  

         

        





2
1

11 1 11

2

1 1

2
1 1

2

0

0

. 

 
where components of the volatility vector  ,..., n   1


 are calculated by means of the formula 

...i i in    2 2
1 .  

Using compact notation, this solution is written as 

   
 

 e Diag
t W t

S t S e


       20
 

. 

 
 
Definition. Components of vector 

 
,..., ne e e e

n
Diag  

   
         

2 2
1

12 2 2


  

are called Expected Excess Growth Rates. 
 
The above definition arises from the fact that for any i n  

 
 

ln ie
i

i

S T
T S

  E
1

0
, 

where symbol E  denotes mathematical expectation.  
On the other hand, it can be shown that 
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 
 

ln ie
i

i

S T
T S


    
E

1
0

. 

 
 

Note. Elements of 


 are also called Expected Instantaneous Rates of Return, reflecting the notion of 

expected simple rate of return over an infinitesimally short period of time. Indeed, it is easy to check that 

for any i n  the following chain of equalities holds: 
 
   e

iTi e
i

i

S T
e

T S T
 

 
    

  
E

1 1
1 1

0
 when T  

approaches zero. 
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Portfolio Analytics 

Definitions  

Portfolio Weights 

As before, assume that the investor is able to invest in a riskless asset S0  and n  risky assets ,..., nS S1 .  

Definition. By investor’s discounted wealth we imply his/her wealth, measured in units of S0 . 

Having at his disposal at time t  the amount of discounted wealth tX , the investor distributes his wealth 

among assets ,..., nS S0  according to proportions    ,..., nt t 0 . The above means that in i -th asset 

the investor puts a share  i t  of his total wealth, i.e. amount  i tt X .  

Amounts    ,..., nt t 0  should satisfy the condition  
n

i
i

t



0

1, therefore for full determination 

of portfolio structure at time t  it is sufficient to provide the amounts    ,..., nt t 1  only . Then 

   
n

i
i

t t 


 0
1

1 . 

Definition.   Vector       ,..., nt t t    1


of dimension n1  refers to a vector of proportions or 

weights of a portfolio at time t . 
Definition. Stochastic process   tt 0


 is a Portfolio Strategy.  

  
Note. In general, SmartFolio operates with portfolio strategies, whose weights are constant in time. At the 
time of writing the only exceptions are “Inaction Region” Portfolio Strategies, used when proportional 
transaction costs are present in the market, and Portfolio Insurance Strategies, used to satisfy specific 
constraints put on wealth dynamics. An economic ground for using portfolio strategies with constant 
weights is given here. 
 
It will be assumed further, that weights of portfolios are constant in time. Such portfolios will be 
associated with the vectors of weights 


. 

 

Types of Portfolio Weights Structures  

Consider the portfolio 


. 
 
Long-Only Portfolio 

,  1i i n   0  

 
Fully Invested Portfolio 

n

i
i





1

1  or equally  0 0  

Long-Only Fully Invested Portfolio 
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 0 0  and ,  1i i n   0 1  
 
Zero-Invested Portfolio 

n

i
i





1

1  or equally  0 1 

Analytical portfolio  

Dynamics of Portfolio Wealth, generated by Portfolio Strategy with Constant Weights 

Assume that discounted prices of assets ,..., nS S1  move according to the analytical model with Mu vector 




, vector of continuously compounded dividend yields d


, covariance matrix   and risk-free rate fr . 

For simplicity assume that the vector 


 is constant through time. 

Then dynamics of discounted portfolio wealth X  , corresponding to portfolio vector 


, satisfies the 
following equation: 

 t
P f P P t

t

dX
r d dt dW

X



      , 

where 
 t tW 0  is a Wiener process, 

 
 ,P  


, 

 ,Pd d


, 

P   
 

. 
 

Note. Readers who are not familiar with stochastic differential equations in continuous time may interpret 

dt  as very short time range, t

t

dX
X



  as a simple return on portfolio over  ,t t dt  and tdW  as a normally 

distributed random variable with zero mean and variance dt , independent of other variables sdW , 

 ,s t dt t dt   . 

 
Definition. Quantity P  is called Portfolio Mu, or Portfolio Expected Instantaneous Simple Rate of 

Return. 
Definition. Quantity Pd  is called Portfolio Dividend Yield. 

Definition. Quantity  ,e e
P P f Pr d      


 is called Portfolio Excess Mu. 

Definition. Quantity P  is called Portfolio Volatility. 

Definition. Quantity Pe e
P P


  

2

2
 is called Portfolio Expected Excess Growth Rate 

The latter definition reflects the easily derived equality ln Te
P

X
T X



  E
0

1
. 
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Decomposition of Portfolio Variance 

The direct consequence of the portfolio volatility definition is the following decomposition of portfolio 

variance P2 : 
n

P i P
i

  


2 2

1

, 

where 
 i

i i
P


 




 2


. Obviously, 

n

i
i





1

1 . 

Element i  denotes proportion of portfolio variance, contributed by i -th asset. 

In other words, vector 


 with components, called Contributions to Portfolio Risk, determines alternative 
representation of portfolio structure, measured in units of portfolio variance rather than wealth, as in 
case of vector 


. 

Historical portfolio 

Let      , ,...,j j jS S S m 0  denote discounted prices of j -th portfolio component at respective 

times , ,...,T0 , where T m  . 

Symbols ijp  and ijr  denote respectively simple return and logarithmic return in j -th portfolio component 

over the period  i 1  to i . 

 
Consider a portfolio with constant weights 


. It means that at the end of each period such portfolio is 

rebalanced to state 


. 

Portfolio Dynamics 

Symbols iPp  and iPr  denote respectively simple return and logarithmic return in discounted portfolio 

wealth X  over the period  i 1  to i . Then 

  exp ij j f

n
r d r

iP j
j

p   



 
1

1 , 

where 

fr  denotes the risk-free rate; 

d


 denotes n1  vector of dividend yields. 
 
Accordingly,  lniP iPr p 1 . 

Thus, the discounted portfolio wealth at time i  is equal to   exp
i

kP
k

X i X r


      
0
1

, where X0  

denotes initial wealth. 
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Historical Portfolio Excess Growth Rate 

Historical portfolio excess growth rate e
P  is equal to 

m
e
P iP

i

r
T




 
1

1
. 

 

Note. When using SmartFolio it might appear that for the same portfolio 


 value of the historical 
portfolio excess growth rate differ substantially from the expected excess growth rate, calculated under 
the analytical model assumptions. There are three reasons that explain such deviation: 
 
 Parameters   and 


 used in analytical portfolio don’t correspond to the historical data. It happens 

when portfolio components have different lengths of historical data; analyzed time period in 
parameters estimation settings doesn’t coincide with historical one; sample estimates are modified 
by some of more advanced estimation methods. 

 
 Distribution of log returns for some assets in portfolio significantly deviates from normality. This is 

often the case when hedge funds or derivatives are included in the portfolio. 
 
 Rebalancing period   is sufficiently long to violate the approximation of an analytical portfolio, 

which is rebalanced continually, with a historical simulation, where rebalancing takes place at the end 
of every   period. 

Historical Portfolio Volatility 

Historical portfolio volatility P  is defined as  
m

e
P iP P

i

r
m

 


 
  2

1

1
1

 

Historical Portfolio Excess Mu 

Historical portfolio excess Mu e
P  is equal to ln iP

m
e r
P

i

e
m




      

1

1 1
. 

Contribution to Portfolio Risk 

For calculation of vector 


 of portfolio components contributions to risk SmartFolio utilizes the following 
approximate formula: 

 
 

Cov ,

Var

j P
j j

P

r r
r

 
 
 , 

where  *
,...,j j mjr r r 1


,  *

,...,P P mPr r r 1


. It is easy to see that for sufficiently small   quantity 
n

i
i




1

 is close to 1 . 
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Portfolio Optimization 

Utility functions 

The utility function describes the dependence between the amount of wealth obtained by the investor, 
when reaching the investment horizon, and that "usefulness" the investor can extract from it. Usefulness 
itself is measured in some abstract units. The shape of the utility function gives a notion of what exactly the 
investor puts in the "risk" concept. The optimal investment problem consists in finding the portfolio strategy 
that maximizes the expected value of the utility function at some predetermined moment in the future. 

Utility Functions Properties  

1. The utility function is an increasing function of wealth. 
Obviously, with growth of wealth usefulness that investor can extract from it, should grow also, 
therefore it is advisable to limit oneself to consideration of increasing utility functions only. 

   
2. The utility function is convex. 

It is easy to see that the investor, who is averse to risk, will have a convex function of utility.  
Indeed, let’s consider the following game: the wealth of the investor at time 0  is equal toX0 . At 
time 1  two outcomes are possible:  

 X X x 1 0  with the probability 
1
2

 

 X X x 1 0  with the probability 
1
2

 

 
This game is fair in the sense that the expected game profit is equal to zero:  X XE 1 0 .  

However for an investor with a convex utility function U  such game will appear unfavorable. 
Indeed, by the definition of convexity 

        U X U X x U X x U X    E 1 0 0 0
1
2

. 

Graphical representation of the game is represented in figure 1.  
The quantity called Certainty Equivalent, which is defined by the expression 

  U U X E1
1CE , is also shown there. 

 
Definition. Certainty Equivalent (CE) is a minimum amount of wealth, guaranteed preservation of 
which allows the investor to decline the proposed game.  
 
 
Figure 1. Graphical representation of a fair game for an investor with a convex utility function. 
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The degree of convexity for a given utility function is determined by the so-called Risk Aversion Measures.  

Commonly used Utility Functions 

1. Quadratic Utility  U x x ax  2 , a  0 . 

 Used to obtain Mean-Variance optimal portfolios in Harry Markovitz single-period framework. 

2. Power Utility  
x

U x



 ,    , \   1 0  

The maximization of expected value of such utility function at time T  is equivalent to the 

maximization of the expected rate of return  , compounded 
T
1

 times per annum: 

 
 

X T
T X



 

           
E

1
1

0
, where  X 0  and  X T  denote the initial and terminal wealth 

respectively. Values   0  correspond to the notion of discount rate. With decrease in   the 
investor’s risk tolerance also decreases. 
 

3. Logarithmic Utility    lnU x x  

It can be considered as a limiting case of a power utility function as   0 . It is used for the 

maximization of expected continuously compounded growth rate: ln TX
T X

   E0
0

1
. 

4. Exponential Utility    expU x ax  , a  0 . 

5. Level reaching indicator  
,  

,  

x a
U x

x a

   

1

0
. 

It is used for the maximization of the probability of reaching the given amount of capital (in the so-
called problems of hedging with probability, smaller than one).  

 U X0         EU X U X x U X x U    1 0 0
1
2

CE

 U X x0

 U X x0

X x0 CE X0 X x0
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Measures of risk aversion 

For the classification of utility functions U  it is efficient to use special measures reflecting character and 
degree of investor’s risk aversion. Most common are two types of such measures: Absolute Risk Aversion 
Coefficient and Relative Risk Aversion Coefficient. 

Absolute Risk Aversion and CARA Utility Functions 

Illustrative Example 
Assume Total investor’s Wealth is equal to $1000. Out of this the investor is willing to risk $500.  
How much money X  investor will be willing to risk when his/her Total Wealth reaches $2000? 
 

$X  500  corresponds to Increasing Absolute Risk Aversion 
$X  500  corresponds to Constant Absolute Risk Aversion 
$X  500  corresponds to Decreasing Absolute Risk Aversion 

 
Note. Natural assumption is that most investors have decreasing absolute risk aversion. 
 

Definition. Absolute Risk Aversion Coefficient at point x  is defined as  
 
 A

U x
x

U x



  . Utility 

functions with Constant Absolute Risk Aversion Coefficient are called CARA Utility Functions. 
 
Example of CARA utility function 
Exponential utility functions:   axU x e , a  0 ,  A A x    . 

Relative Risk Aversion and CRRA utility functions 

Illustrative Example 
Assume that we are once again in the framework of the previous example. 
 

$X  1000  corresponds to Increasing Relative Risk Aversion 
$X  1000  corresponds to Constant Relative Risk Aversion 
$X  1000  corresponds to Decreasing Relative Risk Aversion 

 
Note. Most often investors are assumed to have Constant Relative Risk Aversion 
 

Definition. Relative Risk Aversion Coefficient at point x  is defined as  
 
 R

U x
x x

U x



  . Utility 

functions with Constant Relative Risk Aversion Coefficient are called CRRA Utility Functions.  
 
  

Examples of CRRA Utility Functions 

1. Power utility functions:  
x

U x



 ,     , \   1 0 ,  R R x    1 . 

2. Logarithmic utility functions:    lnU x x ,  R R x   1 . 



Portfolio Optimization   - 17 - 
 

 

Copyright © 2006-2008 Modern Investment Technologies 

 

Note. As a rule, existing methods of R  estimation, when applied to real-world situations, produce 

results in range from 2 to 4. 
 
Key Result 
Maximization of expected value of CRRA utility from portfolio’s terminal wealth leads to portfolio 
strategies with constant portfolio weights over time. 
 
Note. SmartFolio optimization module handles portfolio strategies with constant portfolio weights only. 
The above result justifies this approach.  

Utility functions approach vs. mean-variance approach  

Assume that the analytical model holds in the market with n  assets, excess Mu vector e


 and the 

covariance matrix  . By 


  we denote the vector of constant portfolio weights. 
 
Mean-Variance Approach can be formulated in several equivalent ways. 
 
1. Minimization of portfolio volatility subject to the lower constraint on portfolio excess Mu (over all 

admissible portfolios 


): 

  minP 
   


 subject to  e

P a  


 

2. Maximization of portfolio Excess Mu subject to the upper constraint on portfolio volatility (over all 
admissible portfolios 


): 

  maxe
P 

   


 subject to  P b  


, where b  is a strictly positive constant. 

3. Maximization of the following expression (over all admissible portfolios 


): 

     e e
c P PQ c c             2      

, where c  is a strictly positive constant.  

Utility Function Approach consists in maximizing the expected value   TU X E


 of utility function 

U  from portfolio terminal wealth TX  over all admissible portfolios 


. 
 
Key Result 
Under the assumptions of the analytical model the maximization of expected CRRA utility with the relative 
risk aversion coefficient R   from terminal wealth and the maximization of  Q 

2


 (both 

maximizations are taken over all admissible portfolio vectors 


) result in the same optimal portfolio ˆ . 

 
Important! The above statement allows all the results obtained in single-period framework to be easily 
extended to multi-period one with CRRA Utility Functions.  
 

Note.  Q 
2


 is also known as the Risk-Adjusted Expected Excess Rate of Return, corresponding to the 

relative risk aversion coefficient  . 
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Efficient frontier 

Definition. The portfolio ̂ , which maximizes the expected value of CRRA utility function for some value of 
relative risk aversion coefficient, will be called CRRA-optimal or CRRA-efficient. 
 
Definition. The efficient frontier is the entire set of all CRRA-optimum portfolios. 
 
Note. The definition, mentioned above, differs a little bit from the classical definition of the efficient 
frontier as the entire set of portfolios, which are optimal according to Mean-Variance criterion. If 
assumptions of the analytical model hold true, then by virtue of the result, formulated in the previous 
section, these two definitions coincide. In the general case, however, the above sets can differ. Our 
definition of the efficient frontier may be more suitable here since the maximization of expected utility 
better corresponds to the purposes of an investor, than does maximization by the means of Mean-Variance 
criterion. 
 
Graphic representation of the efficient frontier is the corresponding curve on the Risk-Reward plane. Within 
the framework of the analytical model and convex constraints on the set of admissible portfolios this curve 
is convex; in general case, however, the above convexity property might be violated. 
 
Depending on the purposes of the analysis, definitions of Risk and Reward measures, which correspond to 
the axes on the chart, can vary. Below we present variations of such measures that are realized in 
SmartFolio package. 

Portfolio Risk measures 

 Volatility P .  
 
 Beta (for portfolios with one factor only) 

 
 Value-at-Risk 

 
 Semi-volatility (for historical portfolio only) 

Portfolio Reward measures 

 Excess Mu e
P  

 Expected excess growth rate Pe e
P P


  

2

2
 

 
Note. In a single-period framework it is common to restrict the admissible portfolios to fully-invested 
portfolios only. In a multi-period framework it often makes sense to omit this restriction, in particular if the 
portfolio expected excess growth rate is chosen as a Portfolio Reward measure.  
 
Definition. If the set of admissible portfolios is restricted to fully-invested portfolios only, then the 
corresponding efficient frontier will be denoted as FI-efficient frontier. 
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Examples of FI-efficient frontier graphs for each of the two previously defined measures of portfolio reward 
and  P  chosen as the portfolio risk, are shown below. Additional elements on the first graph refer to the 
subsequent topics. 

 

 
 
The rest of the chapter is devoted to the analytical model case, where the notions of CRRA-efficiency and 
Mean-Variance efficiency coincide. 

Analytical model: Efficient Frontier generation  

Consider Risk-Adjusted Expected Excess Rate of Return      e
P PQ


     

2

2

2
  

, 

corresponding to the relative risk aversion coefficient R  . 

  
The efficient frontier can be parameterized by  0  in the following way: 
 

   ˆ arg maxQ


  



2


, 

where   denotes the admissible portfolios set. 
 

Note. If portfolio 


 lies on FI-efficient frontier, and no other constraints are imposed on  , then implied 

value of   that makes 


 optimal for  Q 
2


 is 

e
P

P





 2 . 

Analytical model: Global Minimum Variance portfolio 

Definition. The Global Minimum Variance (GMV) portfolio is a fully-invested portfolio with the minimum 
volatility value P .  
 

e
P

P

G


GMV


CM
L 

e
P

P
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The GMV portfolio belongs to FI-efficient frontier and is located on its left end. If no constraints are 
imposed on   apart from the full-investment condition, then the GMV portfolio allows for the analytical 
representation: 

GMV


 






1

1

 1
1 1

, 

where 1  is n1  vector of ones. 

The corresponding values of e
GMV  and GMV  are calculated according to the following expressions: 

e
e
GMV






 






1

1


1

1 1
, GMV

 


 1

1

1 1
. 

Analytical model: Tangency portfolio 

Definition. The tangency portfolio is a fully-invested portfolio with maximum value of Instantaneous 
Sharpe Ratio. 
 

Definition. The straight line on the graph  , e
P P  , passing through the origin and being a tangent to FI-

efficient frontier, is called the Capital Market Line (CML). 
 
The tangency portfolio corresponds to the point, where CML touches the FI-efficient frontier. 
 
If no constraints are imposed on   apart from the full-investment condition, then: 
1. Tangency portfolio G


 admits the analytical representation: 

e

G e








 






1

1




1
, 

 where 1  is n1  vector of ones. 
 
2. Formulas for e

G  and e
G  have the following form: 

 e e
e
G e

 




 

 






1

1

 


1
, 

 e e
e
G e

 




 

 






1

1

 


1
. 

 
3. Any portfolio on the FI-efficient frontier can be obtained as a linear combination of the GMV 

portfolio and the tangency portfolio. 
 
4. If the full-investment condition is omitted, then the renewed efficient frontier coincides with Capital 

Market Line. Any portfolio, belonging to CML, can be represented as a linear combination of a 
riskless asset and a tangency portfolio. The latter statement has a title of the Two-Fund Separation 
Theorem. 

Two-Fund Separation Theorem 

Theorem. Assume the following conditions hold: 
 
1. There are no constraints imposed on admissible portfolios 
2. Riskless asset is the same for all investors 
3. Risk-free rates for lending and borrowing are equal 
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4. There are no transaction costs and taxes   
 
Then any portfolio belonging to the efficient frontier is a combination of the tangency portfolio and a 
riskless asset. 

 
Two-Fund Separation Theorem serves as a theoretical basis for index funds activity. Indeed, if Two-Fund 
Separation Theorem holds, then all rational investors regardless of their risk profile hold the same mix of 
risky securities. Therefore, the market share of each asset is equal to its weight in the tangency portfolio. 
In other words, any rational investor who isn’t faced with portfolio constraints would hold all of his funds 
in a riskless asset and in a mutual fund that replicates the market portfolio. 

Optimality criteria 

The structure of investor’s optimal portfolio depends on objective factors (such as budget and 
administrative constraints on portfolio structure), as well as on the subjective preferences of the investor. 
The above preferences depend on both the investor’s attitude to risk and the character of the investor’s 
goals.  
 
The formalization of investor’s preferences results in the formation of some optimality criterion.  
 
The optimality criterion is any function dependent from portfolio weights. The structure of portfolio that is 
optimal relative to the selected criterion corresponds to the maximum (or minimum) value of such function 
(taking into account possible constraints). 
 
Below are presented the optimality criteria that are contained in SmartFolio: 
 

1. CRRA Utility Function Criterion 
2. Target Shortfall Probability Criterion 
3. Benchmark Tracking Criterion 

CRRA Utility Function Criterion 

Assume that utility function of the investor belongs to the CRRA class. Assume also that the relative risk 
aversion coefficient value is known and is equal to  . Consider the following functions: 
 

1. Polynomial utility function  
x

U x


 






1

1
, if    , \  0 1  

2. Logarithmic utility function    lnU x x1 , if   1 . 

 
The portfolio that is optimal relative to a CRRA utility function is obtained by the maximization (over the 
set of all admissible portfolios) of one of the above mentioned functions from the portfolio terminal 
wealth. According to the result stated above (which connects the Utility Function Approach and the 
Mean-Variance Approach) under the assumptions of the analytical model it is equivalent to the 
maximization of the quantity 

  eQ


       
2 2

   
. 
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Analytically tractable optimal portfolios 

Merton Portfolio 
 
If the assumptions of the analytical model hold and there are no constraints on portfolio structure, the 
portfolio M


 that is optimal relative to a CRRA utility function allows for the analytical representation and 

is referred to as Merton Portfolio. 
 

e
M 


  11 

 

Let us consider some arbitrary portfolio 


. It might be informative to find out values of excess Mu that 
make the portfolio 


 optimal given the covariance matrix   and the relative risk aversion  . From the 

above formula it follows that  
e
imp   
 

. 

Vector e
imp


, calculated above, is called Implied Excess Mu. If one wants to measure the distance 

between the existing and the optimal portfolios, one way to do it is to look at the difference between 
e
imp


 and the available estimate ˆe of excess Mu.  

 
Merton Portfolio with higher Interest Rate for Borrowing 
 
The presented material is based on the results, obtained in [Cvitanic, Karatzas; 1992]. Assume that 
analytical model holds, and the role of a riskless asset is played by cash. Consider situation, when the 

borrowing rate in cash b
fr  is higher than the lending rate l

fr . 

Denote A    11 1 , eB    1 1 , where 1  is n1  vector of ones. 

  denotes relative risk aversion coefficient. Then weights M


 of the Merton portfolio are calculated 
according to the following rule: 
 

 

 

, ( )

,               

,              ( )

l b l
f f f

l
M f

b b l
f f f

B
d r B A r r

A

d r B

d r B A r r


 



  


 








                                  

1

1

1

1
0

1

1







1

1

1

 

 
Three-Fund Portfolio 
 
The Three-Fund portfolio rule was proposed in [Kan, Zhow; 2005] as an effective way to deal with model 
parameters uncertainty (it is assumed that the analytical model holds). Three-fund portfolio consists of 
three parts: riskless asset, tangency portfolio and global minimum variance portfolio. Corresponding 
weights are chosen to minimize the expected loss in utility due to the presence of an estimation error. In 
such case, the three-fund portfolio provides significant improvement in utility over the traditional Merton 
portfolio (which is effectively a two-fund portfolio), where the sample estimates are “plugged” in place of 
the population values.  

Three-fund portfolio rule has the following form: 
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   ˆ ˆˆ, e
f f c d c d  


     1 1

3 3
1 

1 , 

where 
  denotes relative risk aversion coefficient; 

ˆe  and ̂  denote sample excess Mu and sample covariance matrix respectively;  

1  is n1  vector of ones; 
,c d  are appropriate constants (see [Kan, Zhow; (2005)] for exact formulas).  

Target Shortfall Probability Criterion 

The criterion based on the maximization of CRRA utility functions has one defect. The point is that the 
true value of the relative risk aversion coefficient R  is extremely difficult to estimate. Moreover, 

experiments exist that show that R  of an investor can vary depending on specific circumstances. These 

reasons form the sufficient ground for the search of more direct optimality criteria. 
 
It seems that one of the most successful attempts in this direction was made by Michael Stutzer (see 
[Stutzer; 2003]). 
 
The essence of Stutzer’s criterion is that an investor chooses the critical level for the excess growth rate 
he/she would like to beat in the future, whereupon minimizes the probability of falling short of the 
selected goal.  
 
Note. It is worth mentioning that Stutzer’s work develops ideas, first proposed by A. D. Roy in 1952 for the 
single-period model. (see [Roy; 1952]) 
 
Criterion algorithm  
1. Investor selects his/her investment horizon T . 
2. Investor selects his/her target excess growth rate min

eR  over the risk-free rate. 
 

Note. If investor’s goal is to beat by rate min
eR some benchmark B , then portfolio wealth TX  must be 

denominated in units of B . See riskless asset. 
 

3. Investor constructs the portfolio strategy with constant weights  min ,eR T


 that maximize the 

probability of portfolio realized excess growth rate  ,
e
TR 0  on  ,T0  exceeding min

eR . 

 
Note. Portfolio strategy with constant portfolio weights is suboptimal in terms of minimizing the 

probability of  , min
e e
TR R0  event only. For example, if for some t T  portfolio wealth tX  exceeds 

 minexp eX R T0 , then target excess growth rate min
eR  on  ,T0  is achieved with 100% probability by 

investing all funds for remaining time  ,t T  to riskless asset. 

To make optimal portfolio structure constant through time, target shortfall probability criterion should be 
defined a little bit more precisely. 
 
Criterion definition. At every point in time t  investor minimizes the probability of  , min

e e
t TR R . 
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Optimal portfolio strategy, which corresponds to this more accurate definition, no longer depends on the 

current portfolio wealth and coincides with the portfolio strategy  min ,eR T


 obtained in step 3. 

 
Features of Optimal Portfolio  min ,eR T


 

 Optimal portfolio    min min,e eR T R 
 

 doesn’t depend on T . 

 Volatility of optimal portfolio  min
eR


 increases with min

eR . 

 
Calculation Techniques 

Optimal Portfolio  min
eR


 is obtained by solving the following problem: 

   min,min min
e e
t TR R T

e


 

 

 
E

1

1
 . 

 
If the analytical model holds, then the stated problem is equivalent to 

 

    minmin min eQ R
 

 
 

 
21

1


, 

where  Q 
2


 corresponds to risk-adjusted expected excess rate of return. 

 

Note. Solution  min
eR


 to the above problem under the analytical model assumptions can be obtained 

alternatively by maximizing the so-called information ratio 
min

min
e

e e
P

R
P

R
I





 , where e
P  is the 

portfolio expected excess growth rate. Such calculation technique is slightly more correct because it leads 
to the right answer even if min

eR  surpasses  max e
P
 





. On the contrary, in the former case for all such 

min
eR  one obtains the same portfolio that maximizes the expected excess growth rate. However, the 

mentioned divergence is hardly significant in practice, since the choice of min
eR , surpassing  max e

P
 





, 

is almost always not economically justified: the resulted optimal portfolio corresponds to a value of   
that is strictly less than 1. 
 
In the general case the information ratio may be replaced with Sortino ratio or STARR ratio.  

Benchmark Tracking Criterion 

As a rule, benchmark tracking criterion serves for the construction of portfolios that contain a modest 
number of assets and replicate dynamics of more diversified portfolio, such as market portfolio.  
 
To apply benchmark tracking criterion two steps are required: 
 
1. Select the benchmark asset and consider it further as a riskless asset. 
2. Construct a fully-invested portfolio that minimizes some measure of Tracking Error between a 

portfolio and the benchmark subject to possible constraints. 
 
In the analytical model framework the most appropriate measure of tracking error is portfolio volatility. 
Often it is coupled together with the lower constraint on portfolio expected excess growth rate. 
 



Portfolio Optimization   - 25 - 
 

 

Copyright © 2006-2008 Modern Investment Technologies 

In the general case of non-normal distribution of returns portfolio downside volatility might appear a 
more plausible measure.  
Minimum Acceptance Rate min

eR  from the downside volatility definition may serve the same purpose as 
the lower constraint on portfolio expected excess growth rate. 

Worst-case scenario optimization 

The traditional portfolio optimization framework assumes that parameters of the analytical model are 
known precisely. In practice, however, statistical estimates of parameters may have significant estimation 
error. In particular it is relevant for the sample estimate ˆe  of vector e


 that represents the excess part of 

expected instantaneous rates of return. Ignorance of estimation error in ˆe  usually leads to unwarrantably 

extreme values of portfolio weights and dramatic shifts in portfolio structure when previous estimates are 
modified with recent historical data.  
 
One way to avoid the mentioned above undesirable properties of an optimal portfolio is to include the 
estimation error explicitly in optimization process. Most practically sound results in this direction were 
obtained in [Garlappi, Uppal, Wang; 2005]. The authors implement the following algorithm, which they call 
Multi-Prior Approach: 
 

1. The set   of possible values for the true vector e


 is defined.  

 
2. The optimal portfolio, corresponding to relative risk aversion coefficient R  , is obtained by 

solving the following Min-Max problem: 

  ˆmax min , max min
e e

e eQ
  


      

  

      2 2  
    

 

 
Note. To consider the robust version of the target shortfall probability criterion the above Min-Max 
problem must be modified in the following way: 

      min min
ˆmin min min min min min

e e

e e eQ R R
    


       

    

          21 1
1 1

2  
   

 

 
In other words, the investor seeks for portfolio with the best performance under the worst-case scenario. 
Inner minimization over expected instantaneous excess returns in the above expressions can be regarded as 
reflection of investor’s uncertainty aversion. A convenient measure for uncertainty aversion degree is 
confidence level  , used below to define  . As    approaches 1, investor’s aversion to uncertainty 
increases to infinity.  
 
Two versions of set  are considered below. 

Separate Confidence Intervals 

Let n  be the number of portfolio components and ˆe  be sample counterpart of e


. For every ,j n 1  

corresponding confidence interval for e
j  in the form of  ˆ ˆ,e j e j

j j      is obtained by solving the 

following equation: 

 ˆe e j
j j        . 
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The above equation has the following solution: 

 ˆ ,j
j j

j

l
t m

m    1 1 1 , 

 
where 
ˆ j  – sample volatility in j -th asset 

l  – average number of observations in one year 

jm  – available number of observations in j -th asset  

 ,t p k1  – inverse function of Student’s t-distribution with k  degrees of freedom: it returns value z  

such that  k z p   , where k  is t -distributed random variable with k  degrees of freedom.  

Set S
 , corresponding to Separate Confidence Intervals for e

j , is defined as n -dimensional 

rectangular parallelepiped  ˆ ˆ,
n

e j e j
j j

j
    



 
1

. 

Then, the stated Min-Max problem, corresponding to relative risk aversion coefficient  , reduces to 

,ˆ ˆ ˆmax max S

n
eWe j

j P P
j

 

 
        



              
 2

12 2 
  

, 

where portfolio worst-case excess Mu ,ˆ SeW
P  is defined in the following way: 

,ˆ ˆS

n
eW e j
P j

j
    



 
1


 

 
Analogously, the Min-Max problem, corresponding to the target shortfall probability criterion, simplifies 
to following: 

  ,
min

ˆˆmin min SeW e
P R

 


   

 

       1
1

2
 

 

 
In case of uncorrelated assets the probability of 


 falling into S

  is n . In the general case calculation 

of the probability of falling into S
  is more complicated. It could be desirable to explicitly state the 

probability of falling into   rather than defining it implicitly by means of confidence intervals for 
individual assets. This is done in the next section. 

Joint Confidence Interval 

Suppose all portfolio components possess the same number of observations m . Consider the quantity 

   ˆˆ ˆe e e e        2 1 
, which is a sample estimate of squared instantaneous Sharpe ratio for 

tangency portfolio, corresponding to portfolio excess Mu equal to ˆe e 


. This quantity is a convenient 

measure for the distance between e


 and ˆe . 

 
Joint Confidence Interval  ,0  for  e 2 

 is defined in the following way: 

  e
     2 
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Solution for   has the following form: 

 
 

 ˆ , ,P
l m n

F n m n
m m n  

  


2 11
1 , 

where  , ,F p k k1
1 2  is an inverse function of F -distribution with k1  and k2  degrees of freedom: it 

returns value z  such that  ,k k z p  
1 2

, where ,k k
1 2

 is F -distributed random variable with k1  

and k2  degrees of freedom. 
 

Set J
 , corresponding to the above joint confidence interval for  e 2 

, is defined as follows: 

  :J e e
      2 

. 

 
The Min-Max problem, corresponding to risk aversion coefficient  , simplifies to 

,ˆ ˆ ˆmax max JeWe
P P 

 
                       

2

2 2 
  

, 

where portfolio worst-case excess Mu ,ˆ JeW
P  is defined as ,ˆ ˆJeW e

P     


. 

 
Correspondingly, the Min-Max problem, corresponding to the target shortfall probability criterion, 
simplifies to the following: 

  ,
min

ˆˆmin min JeW e
P R

 


   

 

       1
1

2
 

. 

Walk-forward optimization 

Walk-forward optimization provides necessary framework to test for stability in optimal portfolios 
corresponding to different historical periods. This scheme is also close to real-world practice consisting in 
frequent recalculation of optimal portfolio weights based on newly arrived information. Well-established 
portfolio optimization sheme from this standpoint is characterized not only by positive portfolio 
performance, but also by low deviations in portfolio weights for adjacent time periods.  
 
Walk-forward optimization is also used to check whether theoretically optimal portfolios have any value in 
practice. There are two reasons why this might not be the case: 
 
 

 Portfolio optimization may result in overfitting the data, especially when performing optimization on 
relatively short time intervals and/or with too many portfolio components; 

 Historical data might be subject to pronounced non-stationarity. 

The algorithm  

1. One chooses the lengths of in-sample and out-of-sample periods; 
 

2. At each optimization round the in-sample and out-of-sample intervals are shifted forward by the 
length of the out-of-sample period as shown in the picture below.   
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In-sample period

Out-of-
sample 
period

Historical period

Aggregate test period
 

 
3. At each stage portfolio optimization is performed based on the data from the corresponding 

in-sample period. The results are then calculated by applying the obtained optimal 
weights to the corresponding out-of-sample period. 
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Factor-based Asset Pricing Models 

General approach 

Factor-based Asset Pricing Models (asset pricing models for short) help imposing the additional structure 
on parameters 


 and   of the analytical model. Restrictions, imposed by an asset pricing model, reduce 

the number of model parameters that need to be estimated and force “rational” investors to allocate 
wealth among riskless asset and selected factors only, ignoring the rest of the risky assets. Particular cases 
of asset pricing models are CAPM and Fama-French 3-Factor Model.  

Linear Regression Equation 

Assume that the financial market consists of n financial instruments, first an  of which we denote as 

assets, the others f an n n   we denote as factors1. It is supposed that the dynamics of the market 

satisfies the conditions of the analytical model with n1  excess Mu vector e


 and n n  covariance 

matrix  . The given parameters can be decomposed according to an  assets and fn  factors: 

 
e
ae
e
f






     




 , 
aa af

fa ff

       
. 

Let us denote through a
tP


 и f
tP


 vectors of simple rates of return for assets and factors respectively on 

the interval  ,t t  , where   is small enough. 

Dependence of a
tP


 from f
tP


 can be expressed by the linear regression equation 
 

a f
t t tP P   
  

, 
where 



 is the an 1  vector of mispricing terms (Jensen’s instantaneous alphas); 

  is the a fn n  matrix of factor sensitivities (Betas); 

t


 is random an 1  vector of residuals with zero average t  0


  and such a covariance matrix 

 *
t t  
 

  that components of vectors t


 and f
tP


 are uncorrelated. 

 
The elements ii  of matrix   are known as residual variances. Their roots are referred to as standard 
errors of forecast, implied by the regression. 

Let us denote sample estimates of e


 and   through 
ˆ

ˆ
ˆ

e
ae
e
f






     
 and 

ˆ ˆ
ˆ

ˆ ˆ

aa af

fa ff

        
. 

Estimates of parameters   and   are found by means of ordinary least-squares using the following 
formulae: 
 

                                         
 
1 Readers shall not confuse the subscript f  used in this section with the riskless rate symbol fr .   

 



Factor-based Asset Pricing Models   - 30 - 

 

Copyright © 2006-2008 Modern Investment Technologies 

ˆ ˆ ˆ
LS af ff

   1  

ˆˆ ˆˆ e e
LS a LS f    . 

Model Assumptions 

The asset pricing model imposes the following restrictions, which must be satisfied by the above 
regression equation: 
1.   0


. 

All mispricing terms in regression equation must be equal to zero. 
 

2.   is diagonal. 
Regression residuals must be uncorrelated. 

Practical Implications 

If selected asset pricing model holds true, then the main implication for a CRRA investor (an investor with 
CRRA utility function) is that there is no sense to invest in individual assets. Corresponding optimal 
portfolio would contain only riskless asset and portfolio factors as its components. Of course, this is true 
only when selected factors are available for an investment (i.e. they are at least tradable financial 
instruments). 

Model-implied Estimates of 


 and   

Assuming that the asset pricing model holds true, leads to the modified estimates for e


 and  . Model-

implied estimates ˆem  and ˆ
m  are given by the following formulae: 

 
ˆ ˆ

ˆ
ˆ

e
LS fe

m e
f






       
, 

*

*

ˆ ˆ ˆ ˆ ˆ ˆ
ˆ

ˆ ˆ ˆ

LS ff LS LS ff
m

ff LS ff

               
, 

 

where the matrix  
,

ˆ ˆ
a

ij i j n


 
 

1
is diagonal and  ˆ ˆ ˆ ˆ

ii aa LS fa ii
     .  

Portfolio Statistics 

Portfolio Beta 

Consider portfolio 


. Vector P


 of portfolio betas can be found in the following way:  

P  
 

. 
 
Portfolio Variance 

Under the selected set of factors the portfolio variance P2  admits the following decomposition 

P P ff P        2
   

 

 
into systematic risk (first item) and diversifiable (nonsystematic) risk (second one).  
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Other Statistics 

Other useful formulae related to asset pricing models include: 
 

2  Statistics 

 ,...,
an


2 2 2

1    is an 1  vector, whose elements take values in  ,0 1 . It is called 

determination coefficient. The more the value i
2  is closer to unity, the better the selected asset 

pricing model describes the dynamics of i -th asset. Calculation formula: 

 ˆ ˆ/i ii aa ii
  2 1 . 

Student’s t -statistics for vector   and matrix   
t -statistics are used in linear regression for testing of hypotheses about regression coefficients being 
equal to zero. Formulas for the calculation of t -statistics  

a
i i n

t t 
 


1

 and   a
f

i nij
j n

t t 
 
 

 1
1

 are 

presented below. 
Assume that m  is the sample size on which the regression coefficients were estimated, and T  is a 
number of years contained in sample. Then 

ˆ
ˆ

i i

ii

T
t 


 , 

 

 
ˆ

ˆ ˆ
a

ij ij
ii ff ii

m n
t






 
 

 1

1
. 

 
The critical two-sided probabilities for Student’s t -distribution with am n 1  degrees of freedom 

are obtained based on the absolute values of the calculated statistics. If am n  1 30 , then one 
may use normal distribution instead of t -distribution. The values obtained in this way are probabilities 
of the corresponding regression coefficients being equal to zero. 
 
 
Note.  The following rule of thumb can be proposed: if the absolute value of t - statistics is more than 3, 
and the number of degrees of freedom is not less than 10, then with high probability (about 99%) the 
corresponding regression coefficient is significant.  

Capital Asset Pricing model  

Capital Asset Pricing Model (CAPM) is virtually a one-factor asset pricing model with market portfolio as its 
only factor. The most common choice for market portfolio is broad market index such as S&P 500 for U.S. 
Stock Market. 
 
The assumptions underlying CAPM extensively use notions of an efficient market and “rational” investor, 
who invests in market portfolio and riskless asset only. Under this assumptions market equilibrium is 
achieved, that leads to the CAPM framework. 
 
One of CAPM consequences is well-known CAPM equation. This equation sets relationship between assets 
excess Mu and their sensitivities to market portfolio, called Beta (for further notations look in Factor-based 
Asset Pricing Models): 

e e
a f  


, where 

 
 

Cov ,

Var

a f

f

P P

P
 



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Essential CAPM advantage is its simplicity, which admits graphical illustration. 
 

 
 

Straight line with slope e
f  that relates assets betas and their respective excess Mu values is called Security 

Market Line (SML). 

Portfolio Beta 

Beta of portfolio 


 is calculated as a linear combination of individual betas:  
n

P i i
i

  



1

 

As expected, point  , e
P P  also belongs to SML: e e

P f P   . 

Portfolio Variance 

Under the CAPM assumptions portfolio variance P2  admits the following decomposition: 
n

P P f i ii
i

    


 2 2 2

1

, where f ff 2  denotes variance of the market portfolio. 

As before, the first item on the right side of the above expression is called portfolio systematic risk, while 
second one is called portfolio diversifiable risk.  

Fama-French 3-factor asset pricing model 

The asset pricing model, developed by Eugene Fama and Kenneth French, is widely accepted as one of the 
most successful Factor-based Asset-Pricing Models ever created. Derived with empirical arguments in mind, 
Fama-French model provides much better fit to real data then popular CAPM.  
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Fama-French 3-factor asset-pricing model corresponds to the following 3-factor regression (for further 
notations look in Factor-based Asset-Pricing Models): 
 

a M M SMB SMB HML HML
t t t t tP P P P        
 

 
 
Three factor portfolios that enter the above equation have the following financial meaning: 
 

1. M represents market portfolio — the same factor that appears in CAPM. 
 

2. SMB (Small Minus Big) portfolio represents zero-investment portfolio that is long in small-cap stocks 
and short in big-cap stocks.  

 
3. HML (High Minus Low) portfolio represents zero-investment portfolio that is long in high book-to-

market stocks (so-called “Value” stocks) and short in low book-to-market stocks (so-called 
“Growth” stocks). 

 
 
Fama-French model is based on the observation that small cap stocks and “Value” stocks historically tend to 
do better than market as a whole. A very natural way to formalize this empirical fact is to write down the 
above regression equation. While 2 -statistics for CAPM usually takes values of around .0 85 , Fama-
French model is capable of accounting for almost all variation in individual assets. 
 
Note. The reason why Fama-French model is so successful in fitting stock data is far form being obvious. 
One of intuitively appealing explanations is that SMB and HML portfolios serve as “correction factors” for a 
broad-based index, commonly used as market portfolio. Since broad index puts more weight in big-cap and 
“growth” stocks rather than in small-caps and “value” stocks respectively, it may lead to some bias between 
broad-based index and practically unobservable market portfolio. It is quite possible that SMB and HML 
portfolios simply “correct” the broad index for the mentioned effect. 
 
The historical data for SMB and HML portfolios can be downloaded from Kenneth French’s website.  
 

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
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Model Parameter Estimation 

Maximum likelihood estimates of means and covariances 

Consider segment  ,T0  with m 1 observations of the discounted prices:      , ,...,S S S m 0
  

, 

where 
T
m

 . Proceeding from practical reasons, we shall assume that the above prices don’t take into 

account the dividend yields and the risk-free rate. Based on the prices    ,...,S S T0
 

 one forms the 

range of logarithmic returns ,..., mr r1
 

 of length m  by means of the formula 

 
  

ln
j

ij
j

S i
r

S i



 1

, i m 1 , j n 1 . 

Sample Expected Growth Rate ̂  

The MLE for expected growth rate  ˆ ˆ ˆ,..., n   1  is the annualized average of  ,..., mr r1
 

. 

ˆ
m

j ij
i

r
T




 
1

1
. 

Sample estimate for expected excess growth rate ˆe  is  

ˆ ˆe
fr d   


1 ,  

where 

fr  denotes risk-free rate; 

d


 denotes n1  vector of dividend yields; 
1  stands for n1  vector of ones. 

Sample Covariance matrix ̂  

The Covariance matrix estimate ̂ , calculated in SmartFolio, is an annualized sample covariance matrix of 
the range ,..., mr r1

 
. 

  ˆ ˆ ˆ
m

i i
i

r r
m

  



  
  

1

1 1
1

 
1 1  

Sample Mu vector ̂  

To estimate 


 one should resort to the following expression: 

 ˆ ln ij

m
r

j
i

e
m




 
     

1

1 1
. 

 

Note. If price process satisfies the analytical model assumptions, then sample Mu vector ̂  can be 

calculated in alternative way from a sample expected growth rate ̂  and a sample covariance matrix ̂ : 
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ˆˆ ˆ ( )Diag   
1
2

. 

 
Corresponding sample estimate ˆe  for excess Mu has the following form:  

ˆ ˆe
fr d   


1 . 

Advanced estimates 

Stambaugh combined-sample estimates for means and covariances 

This technique consists in obtaining maximum-likelihood estimates of the model parameters for assets 
with different start dates and common final date.  
 
In the event of portfolio components having different depths of historical data standard parameters 
estimates, considered in the previous section, result in a loss of information. The covariance matrix of 
portfolio components, calculated based on a historical dataset with different start dates is not necessarily 
positive-definite. Hence, the analyzed dataset is truncated traditionally to the date corresponding to the 
asset with the shortest history. With such an approach, the loss of the information contained in the initial 
dataset set is inevitable. 
 
The method suggested in [Stambaugh; 1997], consists in the consecutive use of the regression of assets 
with a shorter history on assets with a longer history. This time all the information contained in the data is 
used.  
 
Note. It is worth mentioning that the use of the entire dataset improves estimates for longer-history 
assets as well as estimates for shorter-history assets.   
 
For more detailed information on the discussed method see [Stambaugh; 1997]. 

About shrinkage estimators 

The shrinkage estimator is a statistical tradeoff between the bias and the estimation error. For the first 
time the shrinkage estimator appeared in [Stein; 1956], where it was shown that “shrinking” sample 
means of multivariate normal distribution to an appropriate common constant improves estimation 
accuracy. 
 
In general, the shrinkage estimate is obtained via a “shrinkage” of sample unbiased estimate towards 
some biased target with lower estimation error.  
 
Shrinking sample excess Mu towards excess Mu of GMV portfolio 
Shrinking sample covariance matrix towards constant correlations covariance matrix 
Shrinking sample estimates towards values, implied by asset pricing model 
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Shrinking sample excess Mu towards excess Mu of GMV portfolio 

Shrinkage estimator for ˆeJ  was obtained in [Jorion; 1986]. Based on Bayes approach, estimate ˆeJ  

implies shrinking of sample excess Mu ˆe  towards a common constant, equal to sample excess Mu ˆeGMV  

for global minimum variance portfolio. Calculation formulae for ˆeJ  are presented below: 

 
ˆ ˆ ˆ( )e e e
J GMV     1 ,  

 
 

    ˆˆ ˆ ˆ ˆe e e e
GMV GMV

n
m m

n
m n


    





    

 
1

2
1

2
2

, 

ˆ ˆ
ˆ

ˆ

e
e
GMV




 

 






1

1

1
1 1

, 

 
where 1  is n1  vector of ones; 
n  is number of assets; 
m  is number of observations. 

Shrinking sample covariance matrix towards constant correlations covariance matrix 

This estimate is a shrinkage estimator for covariance matrix. It was proposed in [Ledoit, Wolf; 2004]. 

Final estimate ˆ
Shrink  is obtained via shrinkage of the sample covariance matrix towards the covariance 

matrix, produced by averaging correlations across asset pairs. 
 

 ˆ ˆ ˆ
Shrink Const      1 , 

where 

 ̂  – sample covariance matrix, 
ˆ
Const  – constant correlations covariance matrix. 

   
Details, including the formulas for the optimal shrinkage intensity   can be found in [Ledoit, Wolf; 2004]. 

Shrinking sample estimates towards values, implied by asset pricing model 

The given method of the estimation of parameters   and e , first suggested in [Pastor, Stambaugh; 

1999], consists in applying Bayes approach, which assumes a certain degree of investor’s confidence in 
that the market satisfies the selected factor-based asset pricing model (such as CAPM or Fama-French 3-
factor model). 
 
The degree of investor’s confidence in the chosen factor model is determined by the parameter  , taking 
values in the range form 0  to 1 . Value   0  means that the investor completely ignores predictions of 
the factor model, using as estimates for   and e  their sample counterparts, while   1  means, that 

the estimates for   and e  coincide with model-implied estimates ˆem  and ˆ
m . 
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Analytical formulas in general case  0 1  are presented in [Wang; 2005]. 

Joint estimator for means and covariances based on Missing Factor approach 

This method described in [MacKinlay, Pastor; 2000] can be applied in a situation when there are reasons 
to believe that the dynamics of the portfolio assets is determined by influence of one factor only, however 
the factor itself is "unobservable", i.e. the structure of the latter is unknown.  
 
Note. By an unobservable factor one may imply the unknown structure of the market portfolio.  
 

Let vector a
tP


 denote simple rates of return for assets on the interval  ,t t t , where t  is small 

enough. By f
tP  we shall designate corresponding simple rate of return of an unobserved factor.  

 
Suppose that the dynamics of the portfolio components satisfies the one-factor model  

 
a f
t t tP P  
  

 

t E 0


,       t t    E
 

,        ,ft tCov P   0


, 

where 


 denotes vector of betas and vector t


 contains regression residuals. 
 

The additional assumption made in [MacKinlay, Pastor; 2000] is that the covariance’s matrix of the 
residuals   is proportional to the identity matrix:  
 

 

I  2 , I

        

1 0 0

0 0

0 0 1

 . 

 
The above assumption, basically, is not burdensome if portfolio components belong to the same asset 
class (big-cap stocks, small-cap stocks, bonds etc.). 
 
With the assumptions made it is possible to establish a connection between a covariance matrix   and a 

vector 


, as a result one obtains estimates ˆ
miss  and ˆmiss . Analytical formulas used in calculation of 

ˆ
miss  and ˆmiss  are given in [Kan, Zhou, 2005]. 

The Black-Litterman model  

The Black-Litterman model blends together the equilibrium-implied expected returns with expected returns 
extracted from investor’s subjective views. There are several variations of the model implementation; the 
one realized in SmartFolio is mostly based on the approach taken in [Idzorek; 2004]. Instead of expounding 
the model here, the reader is suggested to read this very intuitive and well-written paper. Two other 
extremely useful sources of information are [Walters; 2008] and [Meucci; 2005].  
 
Here we just set forth the main distinguishing features peculiar to the SmartFolio realization of the model. 
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1. The market equilibrium portfolio is calculated from market capitalizations of portfolio components 
and market risk aversion as inputs. 
 

2. The posterior covariance matrix is set equal to the prior covariance matrix. This significantly 
simplifies the computations, while keeping the final results essentially intact. 
 

3. Uncertainty in investor’s subjective views can be expressed in two alternative ways: 
 

a. As a global confidence level varying from 0% to 100%. This is the method proposed in 
[Meucci; 2005] (see formula (9.42)). 

b. As separate confidence levels (varying from 0% to 100%) for each view. The original approach 
is described in [Idzorek; 2004].  

 
In case of one view only these two methods produce the same results. The choice (b) is particularly 
attractive as it combines transparent intuition with high level of flexibility. 
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Dynamic portfolio strategies 
In the present chapter we consider two practically important portfolio strategies. What makes them 
different from our previous focus is that their weights vary through time. 

Portfolio Insurance 

Portfolio Insurance refers to portfolio strategies that take into account the constraints, put onto portfolio 
wealth dynamics. 
 
SmartFolio combines two types of portfolio insurance strategies into one: 
 

1. A portfolio strategy that consists in preventing discounted portfolio wealth from loosing a 
prespecified portion of its initial value. 

2. A portfolio strategy that guarantees preservation of a prespecified portion of accumulated profits. 
 
Let  ,  0 1  denote the portion of initial wealth that investor wishes to secure. 

Let  ,  0 1  denote the secured portion of accumulated income. 

 
Note. If   , then the corresponding portfolio insurance strategy is equivalent to securing   portion of 
the maximum-to-date value of discounted wealth. In other words, an investor does not allow the maximum 
drawdown of his discounted wealth ever to exceed the given constant  . 

Construction of Portfolio Insurance Strategy 

Imagine that an investor wishes to apply  ,  -portfolio insurance to some underlying portfolio strategy 

  tt 0


.  Let tX  denote discounted wealth of a final strategy at time t . For simplicity lets assume 

that trades occur at discrete times , ,...t  0 1 . 
 
Portfolio insurance rules are presented below: 
 

1. At t  0  the initial wealth X0  is divided in two parts SX X0 0  and  RX X 0 01 . The 

former denotes initial value of secured wealth, while the latter denotes initial value of risk wealth. 
The sum of secured wealth and risk wealth will be further referred to as aggregate wealth. 

2. Strategy   tt 0


 is applied to risk wealth, while secured wealth is kept in a riskless asset. 

3. Let max
tX  denote maximum-to-date value of aggregate wealth. Every time the aggregate wealth tX  

reaches its new historical maximum, the amount  max max
t tX X  1  of extra profits is transferred 

to secured wealth and put into a riskless asset. 
 
It is obvious, that formulated portfolio insurance rules satisfy wealth constraints, stated above. The reason 
why these very rules were chosen to determine portfolio insurance is explained by the following fact 
(similar problem is discussed in [Cvitanic, Karatzas; 1995]): 
 
Key Result 
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Let  M


 denote Merton portfolio for an investor with CRRA utility function. Then the stated above 

portfolio insurance rules, applied to M


, define a portfolio strategy that is optimal for the same investor in 
presence of the corresponding portfolio wealth constraints. 

Proportional Transaction Costs and Inaction Region 

Transactions in the financial market are often accompanied by essential costs. As a rule, an investor comes 
across the transaction costs proportional to the total volume of transactions made. Such costs are more 
often adhered to the value of bid-ask spread and the broker commissions. Alternative kind of costs, also 
investigated in literature, are called fixed costs. Fixed costs do not depend on the volume of the 
transaction. Below we shall concentrate on the proportional transaction costs. 
The portfolio strategy which consists in continuous maintenance of given portfolio weights in such a 
situation appears unacceptable. Indeed, as the turnover of such strategy can be very high, the associated 
transaction costs arising during portfolio rebalancing also becomes unreasonably high.  
 
The qualitative form of theoretically optimal strategy in the presence of proportional transaction costs is 
illustrated below by the examples of portfolios which consist of one and two risky assets. 

One Asset Example  

 

 
 
Let M  be the optimal weight in risky asset in absence of transaction costs (the only component of the 

Merton portfolio). Let t  denote current weight in risky asset at time t . 
The optimal strategy in presence of transaction costs is described by the following rules: 
 

1. Appropriate critical weights   and   such that M  
    are calculated. 

2. While t  
   , no transactions take place. 

3. Once t  reaches  , investor must transact the minimal amount required to keep t  . 

4. Once t  reaches  , investor must transact the minimal amount required to keep t  .  
 
In other words,  , 

  defines the inaction region, and portfolio weight t  is constantly kept inside 

this region once (due to price fluctuations) t  is driven to one of its borders. 

General Case 

When there is more then one risky asset in portfolio, the situation becomes far more complicated, but the 
logic of the optimal behavior essentially stays the same.  

 
1. There exists the so-called inaction region (coherent set, situated in n -dimensional space of 

portfolio weights), where no transactions take place while portfolio weights belong to the above set. 
2. Immediately after the portfolio vector abandons the inaction region, an investor must transact the 

minimal amount in appropriate assets, which is required to keep portfolio weights from leaving the 
inaction region. In other words, the inaction region frontier plays role of reflecting boundary. 

 

 
M
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Note. As a rule, point in n -dimensional space, defined by the Merton portfolio, lies inside the inaction 
region. The latter point is called the Merton point. 

Two Assets Example 

Lets apply the above n -dimensional optimal rule to two-dimensional case of portfolio assets S1  and S2 . 

The picture below shows the inaction region with Merton point M


 inside it. All possible types of 
transactions that are required to send portfolio weights back to the inaction region are shown with 
arrows. 

 

Calculating the Inaction Region 

It follows from the above that optimal portfolio strategy under proportional transaction costs is 
completely defined by its inaction region. Unfortunately, it seems that the obstacles arising when the 
attempts are made to find analytical solution for the exact form of inaction region are insurmountable.  
 
There are many publications devoted to the problem of finding the reasonable approximation for the 
inaction region, most of which contain some numerical procedures (see, for example, [Muthuraman, 
Kumar; 2006]). On the contrary, we will focus on the result first obtained in [Davis, Norman; 1990] and 
extended to the multidimensional case by D. Kramkov and S. Volkov in 1996.1 In special settings they 
managed to find a closed analytical solution for the inaction region approximation, which works quite 
satisfactory in practice. 
 

                                         
 
1 To our knowledge, no results of theirs were published in English-speaking journals. 

Buy S1 , 
Sell S2  

Inaction Region 

Buy S2  

Sell S1 , 
Buy S2  

Buy S1 , 
Buy S2  

Sell S1 , 
Sell S2  

Buy S1  
Sell S1  

Sell S2  

M


2

1
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Assumptions of the Model 
 

1. The authors work in the framework of the analytical model, modified to include proportional 

transaction costs, represented by vector  ,..., n   1


, where i  denotes the costs size in the i -

th asset. For example, %i  1  means that %1  of the total amount traded in the i -th asset is 

contributed to costs. Usually i  is close to the Bid-Ask Spread, expressed in % of the asset price. 
2. The CRRA utility functions, determined by relative risk aversion coefficient  , are considered. 
3. All possible structures of the inaction region are restricted to cuboids (rectangular parallelepipeds 

in n -dimensional space) with the Merton point in the center. 
 

Note. The specified shapes of the inaction region contain the optimal one only when all portfolio 
assets are uncorrelated. But there are two reasons why their use is justified. On the one hand, 
portfolio strategies with cuboid region of inaction are significantly easier to implement. On the other 
hand, practical benefits received from utilizing cuboid region of inaction and from inaction regions of 
more sophisticated shapes are insignificant.  

 
4. Since obtained results are expressed in asymptotic form, their usage is limited to sufficiently small 

transaction costs (around 5% or less). 
 
Formulae for the inaction region 
 

Let M



 denote n1-vector, corresponding to the Merton portfolio with relative risk aversion  . 

Define an Inaction Region xG  in the following way: 

    ,  ,x M i i M ii i
G x x i n         1

 
, 

where  M i



, ,i n 1 , correspond to i -th component of Merton portfolio.   

 
Denote the following vectors and matrices: 
 

 
,ij i j n

a


  –  n n -covariance matrix 

E  –  n n -identity matrix 

I  –  n n -matrix of ones 

 
,ij i j n

B b


  -  n n -matrix, defined by the following equality: 

         Diag Diag Diag DiagM M M MB E I E I         
   

, 

where  Diag 


 denotes a diagonal matrix with elements of 


 at the main diagonal. 

Also denote 

ii i
i

ii

b
a





    

1
33

2
. 

 
Let S -set denote such a set that is symmetrical relative to all coordinate axes, translated to the Merton 
point. 
 
Key Result 
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Vector  ,..., n    1


, defined above, determines the inaction region G , which is asymptotically (for 

  0


) optimal among all S -sets. Obtained order of asymptotic convergence is   
2
3


. 
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Risk Management Tools 

Definitions 

Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR, other notations include Expected Shortfall, 
Expected Tail Loss, Tail VaR) are indispensable tools of portfolio risk management. 
 
VaR and CVaR measures become increasingly useful when the distribution of portfolio logarithmic returns 
substantially deviates from normal. In this case, volatility as a common risk measure appears inappropriate. 
 
Portfolio VaR is defined as a maximum portfolio loss (measured in % of initial wealth) over a given time 
interval at a given level of statistical confidence. 
Definition. T

VaR  is implicitly defined by the following expression (for simplicity we assume that portfolio 
returns have continuous distribution): 

  ,
e T
Tp     VaR0 1 , 

where  ,
e
Tp 0  is portfolio excess simple return over  ,T0  period. 

To put it more formally, T
VaR  corresponds to the  1 -quantile of the distribution of portfolio 

excess simple return over  ,T0  period. 

 
Portfolio CVaR is conditional expectation of losses beyond VaR.  

Definition. T
CVaR  is an expected value (with opposite sign) of portfolio excess simple return  ,

e
Tp 0  

under the condition  ,
e T
Tp VaR0 : 

    , ,
T e e T

T Tp p  CVaR E VaR0 0  

In other words, T
CVaR  is an average value of   % 1 100  of highest losses. 

Common values for   are .0 9 , .0 95 , .0 975 and .0 99 . The time horizon T  usually corresponds to a 
period required for complete liquidation of all portfolio positions. 
 
Figure 1. Distribution of logarithmic portfolio returns over the period  ,T0 .  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 VaRCVaR
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Important! Although CVaR isn’t so widespread a measure of risk as VaR, in contrast to VaR it possesses 
important property of subadditivity. Subadditivity of CVaR means that CVaR of simultaneously holding two 
portfolios is less or equal to the sum of CVaRs for individual portfolios, considered separately. That’s why 
CVaR is more suitable quantity to be included in portfolio optimization (as constraint or part of an 
optimization criterion) than VaR is. Essential shortfalls of VaR as a measure of risk due to a lack of 
subadditivity are discussed in detail in [Artzner, Delbaen, Eber, Heath; 1999]. 

Calculation techniques 

There are plenty of approaches to the calculation of VaR and related measures. The methods that are 
implemented in SmartFolio are described below. 

 
 Delta-Normal Method 
 
 Empirical Distribution 
 
 Implied Normal Distribution 
 
 Implied Student’s t-Distribution 
 
 Cornish-Fisher Expansion 

 
The last four methods utilize block bootstrapping algorithm. 

Delta-Normal Method 

This method is simplest and the most common in application. Based on the analytical model assumptions, 
it calculates  1 -quantile z  of the normal distribution with parameters e

T Pm T  and 

T PT  . It corresponds to the distribution of portfolio excess growth rate equal to ln TX
T X0

1
, 

where tX  denotes the discounted portfolio wealth at time t . T
VaR  is then calculated as 

T ze 
  VaR 1 . 

Accordingly, 

exp T TT
T

T

z m
m f 



 

            
CVaR 1

1
, 

where  f   denotes the density function of the standard normal distribution.  

 
Unfortunately, Delta-Normal Method (DNM) is far form being precise. The main drawback of DNM is that 
it doesn’t take into account higher moments of the portfolio returns distribution including fat tails, which 
are very common in practice and have critical impact on VaR-CVaR values.  
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Another possible shortcoming of DNM is the assumption that portfolio returns are independent through 
time. It leads to the so-called square-root scaling law for standard deviation, which means that 

T T
T
T

 
2 1

2

1

. In practice it is often the case that instead of square root degree, a  12  should be 

used. 
Final DNM weakness is its inability to account for non-linear relationships between portfolio components, 
which arise when options are included in portfolio.  
 
As a consequence, quite often DNM seriously underestimates true values for VaR and CVaR, particularly 
for the extreme values of  , exceeding .0 95 . 

Empirical Distribution 

Empirical Distribution approach involves the following steps: 
 

1. The array of historical portfolio excess logarithmic returns over the period 0  to T  is formed. If T  
contains more then one period, then prior implementation of block bootstrapping algorithm must 
increase accuracy. 

2. The obtained array is sorted and the worst   % 1 100  values are extracted.  

3. The best and the average values of the selected worst part are calculated.  
4. VaR and CVaR are then obtained by transformation of respective values to represent simple 

returns with the opposite sign using rp e 1  relationship. 
 
If homogeneous historical data of virtually unlimited length was available, then the empirical distribution 
approach would be ideally suited for the calculation of VaR and CVaR. It accounts for both higher 
moments of portfolio returns distribution and non-linear interdependencies. In reality its use is limited to 
portfolios, whose components are traded for time long enough (at least, 5-7 years for daily database).  

Implied Normal Distribution 

Delta-normal method utilizes the assumption of square-root growth in portfolio standard deviation T  as 

a function of T . On the contrary, implied normal distribution approach uses the unique estimate of T  
for each value of T . For this purpose, analogously to empirical distribution approach, the array of 
historical excess logarithmic returns over the period  ,T0  is formed using block bootstrapping 

algorithm. Then the sample estimate ˆT  is obtained and inserted in formulas for delta-normal method. 
 
While the implied normal distribution approach doesn’t assume the square-root scaling law in standard 
deviation, it still suffers from two residuary drawbacks, peculiar to delta-normal method: the inability to 
account for higher moments of portfolio returns distribution and the non-linear relationships among 
portfolio components. 

Student’s t-Distribution 

There is much evidence, coming from recent publications in financial math, that Student’s t-distribution 
delivers quite satisfactory fit to a wide range of financial assets including stocks, commodities and 
currencies. Its attractive feature is a power law of tails behavior, which makes t-distribution an appealing 
alternative to normal distribution thanks to positive kurtosis excess. 
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Figure 2. Student’s density vs. Normal density 

 
 
As before, the VaR-CVaR calculation is anticipated with formation of an array of historical excess 
logarithmic returns over the period  ,T0  by means of block bootstrapping algorithm. 

 
Analytical formulas for VaR and CVaR under the assumption of non-central Student’s t-distribution with 
possibly non-integer degrees of freedom are obtained in [Andreev, Kanto; 2004]. Corresponding density 
function is defined by the following expression: 
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where m  is location parameter,   is dispersion parameter and   denotes degrees of freedom. 

In this case quantity   is directly related to kurtosis. Corresponding estimate ˆT  has the following form: 
ˆˆ /T TK  4 6 , 

where ˆ
TK  is the sample estimate for kurtosis excess (it is assumed that ˆ

TK  0 ). Corresponding 

estimates for m  and   are ˆ ˆeT Pm T  and 
ˆˆ ˆ

ˆ
T

T T
T


 




 22
 respectively.  

Then  expT r  VaR 1 , where  ˆˆ ˆ; ;T T Tmr t    1 1  and ˆˆ ˆ; ;T T Tmt 
1  stands for inverse Student’s 

t-distribution function with parameters ˆT , ˆTm  and ˆ
T . Accordingly  expT r 

 CVaR 1 , where  
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In the latter expression f  denotes Student’s t-distribution density function and 
ˆ

ˆ
T

T

K

K
 

6 3
. 



Risk Management Tools   - 48 - 
 

 

Copyright © 2006-2008 Modern Investment Technologies 

Cornish-Fisher Expansion  

Cornish-Fisher Expansion approximates the quantiles of an arbitrary distribution with known moments in 

terms of quantiles of the standard normal distribution.1 The main advantages of applying Cornish-Fisher 

expansion in calculation of VaR-CVaR are speed and ability to account not only for fat tails as Student’s t-

distribution does, but also for asymmetry in returns, measured with skewness. 

 
Algorithm 

1. An array of historical excess logarithmic returns over the period  ,T0 is created  by means of 

block bootstrapping algorithm.  
2. Based on the obtained array four moments are estimated: sample mean ˆTm , sample standard 

deviation ˆT , sample skewness T̂s  and sample kurtosis excess ˆ
TK . 

3. Let z  denote  1 -quantile of standard normal distribution.  1 -quantile z , corrected 

for kurtosis and skewness, is established by means of Cornish-Fisher expansion up to 4-th member 
(for details see [Zangari; 1996]) : 

     ˆˆ ˆT T Tz z z s z z K z z s            2 3 3 21 1 1
1 3 2 5

6 24 36
 . 

4.  ˆ ˆexpT
T Tm z   VaR 1   

5. 
 
 

ˆ ˆexpT
T T

f z
m

F z






      

CVaR 1



, where  f   and  F   are the standard normal 

density and distribution function respectively. 

                                         
 
1 For more details about Cornish-Fisher expansion visit http://www.riskglossary.com/link/cornish_fisher.htm 

http://www.riskglossary.com/link/cornish_fisher.htm
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Appendices 

Appendix A. Block Bootstrapping Algorithm 

Statistical bootstrapping algorithms generate artificial data series from an original sample via random 
resampling with replacement. Applied to financial time series, bootstrapping procedures help to construct 
the distribution of returns over long investment horizons, the problem that can hardly be solved without 
any model assumptions using original sample only.   
 
Block Bootstrapping is a variation of bootstrapping that randomly selects (potentially overlapping) blocks of 
contiguous observations, as opposed to individual observations. The nice property of block bootstrapping is 
that it helps preserving serial dependence in the dataset. 
 
In the following example block bootstrapping algorithm is described:  
 

1. Suppose, 4 years of daily portfolio returns are available (1000 observations total). The goal is to 
construct the distribution of portfolio returns over 5 year horizon. 

2. Let’s group original sample into 950 overlapping blocks of 50 days in each.  
3. To generate 100 artificial samples of 5 year length, it is necessary to randomly resample with 

replacement (i.e. the same block is allowed to be used for several times) 2500 (250*5*100/50) 
blocks, obtained from the original sample. 

4. The produced samples are then used to construct the empirical distribution of portfolio returns over 
5 year horizon.  

 
Bootstrapping at Wikipedia 

Appendix B. Downside Volatility 

Let’s start by selecting a value for the continuously compounded minimum acceptance excess rate (MAR). 
Downside volatility takes into account only those values of observed excess rates of return that lie below 
MAR. In other words, downside volatility is a measure of risk, defined as volatility below MAR.  
 
Definition. Downside volatility  , corresponding to selected value min

eR  of MAR, is defined as  

   
min

, minmin ,e
e e
TR

R R  E
2

0 0 , 

where T  denotes chosen investment horizon. 
 

Note. In the case of  min ,
e e

TR  0  the corresponding downside volatility measure is called semi-volatility. 

 
Note. Compare semi-volatility definition to an expression for volatility  :  

    , ,
e e
T TR  E

2
0 0 . 

Obviously, if  ,
e
TR 0  is symmetrically distributed, then volatility is equal to semi-volatility multiplied by 2. 

 

http://en.wikipedia.org/wiki/Bootstrapping
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If a distribution of logarithmic returns deviates from normality, then downside volatility is a more preferable 
risk measure than often more common volatility measure. Most evident advantage of downside volatility is 
its ability to give a proper weight for possible asymmetry in distribution of returns measured with skewness. 
But with the proper choice of MAR the downside volatility can also reflect possibly positive kurtosis excess 
in price increments.  
 
From the practical point of view, downside volatility is better suited for portfolio risks measurement , since 
virtually all investors are tolerant to sudden upside movements in wealth, while tending to avoid 
corresponding downside movements.  
 
Normalized Downside Volatility 
 

In practice, it is more convenient to use an adjusted measure of downside volatility, called normalized 
downside volatility. Under the assumptions of the analytical model normalized downside volatility 
coincides with  . 
 
Definition. Normalized downside volatility norm , corresponding to value min

eR  of MAR, is defined as  

     
min

min

e

e
Rnorm

R xf x x F x


 

  21
, 

where 
 min ,

e e
TR

x





 0
, and  f   and  F   stand for standard normal density and distribution 

function respectively. 

Appendix C. Investment ranking and Performance measures 

Most of the existing measures, destined to evaluate performance of a portfolio or an individual asset, have 
the form of Risk-to-Reward ratio. They differentiate depending on particular definitions of Risk and 
Reward.  Choices of risk and reward, utilized in SmartFolio, are summarized in the following table. 
 

 Reward 

Risk 
Expected excess growth 

rate 
Excess Mu 

Volatility Information Ratio Instantaneous Information Ratio 
Downside Volatility Sortino Ratio Instantaneous Sortino Ratio 

Normalized Downside Volatility Normalized Sortino Ratio 
Normalized Instantaneous Sortino 

Ratio 
Conditional Value-at-Risk STARR Ratio Instantaneous STARR Ratio 

Normalized Conditional Value-
at-Risk 

Normalized STARR Ratio 
Normalized Instantaneous STARR 

Ratio 
 

Fix some minimum acceptance excess rate min
eR . In the following context the latter is also is also called 

Target Excess Rate. 
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Information Ratio 

Definition. Information Ratio I , corresponding to min
eR , is equal to the difference between expected 

excess growth rate and min
eR , divided by volatility: 

 

min

, min
e

e e
T

R

R
I





 0
. 

 
Note. Widely recognized Sharpe Ratio is a particular case of information ratio corresponding to 

min
eR  0 . 

Sortino Ratio 

Definition. Sortino Ratio s , corresponding to min
eR , is equal to the difference between expected excess 

growth rate and min
eR , divided by downside volatility with MAR equal to min

eR : 

 

min

min

, min
e

e

e e
T

R
R

R
s





 0
. 

Normalized Sortino Ratio 

Definition. Normalized Sortino Ratio, corresponding to min
eR , is similar to Sortino ratio, but with 

normalized downside volatility in denominator: 

 

min

min

, min
e

e

e e
Tnorm
normR
R

R
s





 0
. 

 
Under the assumptions of the analytical model, the normalized Sortino ratio coincides with information 
ratio. 

STARR Ratio 

Definition. STARR Ratio is equal to the difference between expected excess growth rate  ,
e
T 0  and min

eR , 

divided by the Conditional Value-at-Risk, transformed to logarithmic return:  

 

 
, min

ln CVaR

e e
TT

T

R




 


 
STARR 0

1
. 

Normalized STARR Ratio 

Definition. Normalized STARR Ratio (NSTARR) is the STARR ratio, corrected in such a way that in case of 
normally distributed logarithmic returns it coincides with information ratio.  
 

 , min

NCVaR

e e
TT

T

R




 
NSTARR 0

, 

where NCVaRT
  denotes Normalized CVaR. 
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Definition. Normalized CVaR is a measure, based on CVaR, corrected in such a way that under the 
assumptions of the analytical model it coincides with volatility measure.  

       , ln CVaRT e T
TT

f F T 






  


NCVaR 0

1
1

1
, 

where  f   and  F   are standard normal density and distribution function respectively. 

 
Under the assumptions of the analytical model, all above performance measures are equivalent when used 
to sort the list of available portfolios according to their investment attractiveness. Otherwise, because of 
the properties of downside volatility and CVaR respectively, the Sortino Ratio and the STARR ratio might 
become more relevant measures of performance. 

Standard performance measures vs. their instantaneous counterparts 

Below we focus on the Sharpe ratio, but the same logic holds true for all other performance measures, 
presented above. 
Definition. Sharpe Ratio S  is equal to the expected excess growth rate divided by volatility: 

e

S



 . 

Definition. Instantaneous Sharpe Ratio instS  is equal to excess Mu divided by volatility: 
e

instS S
 


  
2

. 

 
Both the Sharpe ratio and the instantaneous Sharpe ratio sort assets according to their relative 
performance in the past. However, there is an essential distinction in the information the corresponding 
rankings reflect.  
 
 If compared assets are supposed to be used as components of a continuously rebalanced portfolio, 

then the instantaneous Sharpe ratio becomes more appropriate performance measure. 
 

 If one compares already formed portfolios, rather than separate assets, then their relative investment 
appeal should be measured with the Sharpe ratio. 

 
In the former case, when selecting portfolio components, the investor has an opportunity of combining 
them with each other and with the riskless asset. On the contrary, in the latter case one considers the 
portfolios as separate alternative investments, thus depriving the investor of the continuous rebalancing 
advantages. For further details see [Nielsen, Vassalou; 2004]. 

Appendix D. Selected definitions 

Broad-based Index  

Broad-based Index at InvestorWords 
Broad-based Index at Investopedia 

Cost of Carry  

Cost of Carry at InvestorWords  

http://www.investorwords.com/582/broad_base_index.html
http://www.investopedia.com/terms/b/broad-basedindex.asp
http://www.investorwords.com/1154/cost_of_carry.html
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Dividend Yield 

Dividend Yield, as used in current review, determines continuously compounded rate of return paid on 
an asset. 
Selecting an appropriate value for dividend yield allows correct evaluation of such financial instruments, 
included in portfolio, as currency rates, futures and coupon bonds.  
 
 Currency Exchange Rates  
 Dividend yield must be set to the difference between continuously compounded foreign interest 

rate and domestic interest rate.  
 
 Futures 
 Dividend yield must be equal to cost of carry (expressed in the form of continuously compounded 

rate of return) in the contract under consideration. 
 
 Coupon Bonds 
 Dividend yield must be equal to coupon rate (once again, its continuously compounded counterpart 

must be taken). 

Efficient Market  

Efficient Market at InvestorWords  

Index Fund  

Index Fund at InvestorWords  

Investment Horizon  

The Investment Horizon is a critical date for the investor: when reaching it he/she evaluates success made 
by the investments. For private persons such date often corresponds to the moment up to which they 
postpone their consumption. So, for example, it can be scheduled date of a large purchase, an expected 
birth of a child or the moment of retire.1 For portfolio manager the investment horizon is equal, as a rule, to 
one or two years: after this time the management estimates his work and on the basis of results the 
manager receives bonus for the specified period.  
 
It should be noted that the gap, formed thus between an investment horizon of the investor and of his 
portfolio manager is one of the problems that the managment company comes across and which rarely 
attracts sufficient attention. (see [Cvitanic, Lazrak, Wang; 2006]).  

 
Investment Horizon at InvestorWords 

Market Portfolio  

Market Portfolio at InvestorWords 

                                         
 
1 The latter example of an investment horizon is slightly incorrect. When investing the retirement savings one should select as his 
investment horizon the date corresponding to the expected life span of the family members rather than the moment of retirement 
itself. The above observation comes from the fact that the pensionary consumption, as a rule, is uniformly extended in time, so 
the average length of the investment period in this case significantly exceeds time left up to the retirement. 

http://www.investorwords.com/1672/Efficient_Market_Theory.html
http://www.investorwords.com/2429/index_fund.html
http://www.investorwords.com/2616/investment_horizon.html
http://www.investorwords.com/5653/market_portfolio.html
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Risk-free Rate 

The Risk-free Rate (or Riskless Rate) is continuously compounded rate fr  earned on riskless asset. If 

Cash (Bank Account) is used as riskless asset, then risk-free rate corresponds to bank account interest 
rate. Otherwise, if the riskless asset differs from cash, then risk-free rate is equal to dividend yield for that 
asset. 

Riskless Asset 

Riskless Asset or Risk-free Asset (other common notation is Numeraire) – it is an asset, in units of which 
the investor measures his welfare. In an ideal the investor should be indifferent to changes in value of the 
riskless asset. 
 

As a rule, the choice of riskless asset is adhered to investor’s expenses. For example, if the investor 
carries the most part of expenses in US dollars, then the most natural choice of welfare measure would 
also correspond to US dollars. 
Common choices for riskless asset: 
 

1. Cash (bank account, denominated in domestic currency) – better suits for short-term investments 
since it doesn’t account for the inflation risk. 

2. Fixed-Coupon Bond 
3. Inflation-Linked Bond – the best choice for the long-term investments of pension funds 
4. Foreign Currency or Currency Basket 
5. Broad-based Index – natural choice for many fund managers, whose task consists in maximizing the 

growth of investments relative to the selected index.  
      

Wiener Process 

Wiener Process at Wikipedia 
Brownian motion RiskGlossary 

http://en.wikipedia.org/wiki/Wiener_process
http://www.riskglossary.com/link/brownian_motion.htm
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Risk and Asset Allocation (Springer Finance) by Attilio Meucci (Hardcover - Jan 11, 2008) 
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J. Fabozzi, Sergio M. Focardi, and Petter N. Kolm (Hardcover - Jan 3, 2006) 
 
Active Portfolio Management: A Quantitative Approach for Producing Superior Returns and Controlling 
Risk by Richard C. Grinold and Ronald N. Kahn (Hardcover - Oct 26, 1999) 

Investment Dictionaries 

RiskGlossary.com 
 
InvestorWords.com 
 
Investopedia.com 
 
AndreasSteiner.net 

Brilliant review of the Modern Portfolio Theory 

moneychimp.com 

Web resource dedicated to the Black-Litterman model 

blacklitterman.org 
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Table of symbols 
1  Vector of ones 
  Confidence level 




 Vector of instantaneous alphas 

ˆLS  Vector of ordinary least-squares estimates for instantaneous alphas 

P


 Vector of portfolio betas 

  Matrix of betas 
ˆ
LS  Ordinary least-squares estimate for matrix of betas 

CE  Certainty equivalent 
T
CVaR  Conditional Value-at-Risk 

d


 Vector of dividend yields 

Pd  Portfolio dividend yield 

 Diag x


 Diagonal matrix with elements of x


 at the main diagonal. 

 Diag A  Vector, whose elements are equal to diagonal elements of A  




 Vector of transaction costs 

t


 Vector of regression residuals 

E  Mathematical expectation symbol 

min
eR

  Downside volatility 

min
e
norm
R

  Normalized downside volatility 

xG   Inaction region 

min
eR

I  Information ratio 

A  Absolute risk aversion coefficient 

R   Relative risk aversion coefficient 

 ,T 0  Expected simple rate of return 




 Mu vector 
e


 Excess Mu vector 
e
imp


 Implied excess Mu vector 

ˆe  Vector of sample estimates for excess Mu  

ˆem  Model-implied estimate for excess Mu vector 

P  Portfolio Mu 
e
P  Portfolio excess Mu 
e
GMV  Excess Mu for GMV portfolio 
e
G  Excess Mu for tangency portfolio 

  Set of possible values for excess Mu vector 
T
NSTARR  Normalized STARR ratio 

 ,Tp 0  Simple return 
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 ,TP 0  Simple annual rate of return 

0  Weight in riskless asset 




 Vector of portfolio weights, corresponding to risky assets 

GMV


 Vector of portfolio weights for GMV portfolio 

G


 Vector of portfolio weights for tangency portfolio 

M


 Vector of portfolio weights for Merton portfolio 

f3


 Vector of portfolio weights for “three-fund” portfolio 

  Set of admissible portfolios  

 cQ 


 Risk-adjusted expected excess rate of return 

 ,Tr 0  Logarithmic return, calculated on  ,T0  period 

 ,TR 0  Simple annual rate of return, calculated on  ,T0  period 

 ,T 0  Expected logarithmic rate of return, calculated on  ,T0  period 
e
P  Portfolio expected excess growth rate in the analytical model 

fr  Risk-free rate 
b
fr  Borrowing rate 
l
fr  Lending rate 
2  Determination coefficient in regression 

min
eR  Target excess growth rate, minimum acceptance excess rate (MAR) 




 Volatility vector 

P  Portfolio volatility 
e


 Vector of expected excess growth rates in the analytical model 

GMV  Volatility of GMV portfolio 
e
G  Volatility of tangency portfolio 

min
eR

s  Sortino ratio 

min
e
norm
R
s  Normalized Sortino ratio 

S  Sharpe ratio 

instS  Instantaneous Sharpe ratio 
T
STARR  STARR ratio 

  Volatility matrix 

t  t-statistics vector for instantaneous alphas 

t  t-statistics matrix for betas 

T  Investment horizon 

 U x  Utility function 




 Vector of assets relative contributions to portfolio variance 
T
VaR  Value-at-Risk 

  Covariance matrix 

̂  Sample covariance matrix 

ˆ
m  Model-implied estimate of covariance matrix 

  Covariance matrix for regression residuals 
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